Preparation and Cyclization of 4-Chloro-5,5 dimethyl-3-formyl-1,2-oxathiolene 2,2-dioxide

Li Tian¹ and Lun-Zu Liu²

¹*College of Chemistry and Life, Tianjin Normal University, Tianjin, 300074, People's Republic of China*

²*State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300074, People's Republic of China*

Received 2 November 2004; revised 29 December 2004

ABSTRACT: *Chloroformylation of 5,5-dimethyl-1,2 oxathiolan-4-one 2,2-dioxide* **4** *with Vilsmeier reagent (DMF/POCl3) led to the formation of cyclic β-chlorovinylaldehyde (4-chloro-5,5-dimethyl-3-formyl-1,2 oxathiolene 2,2-dioxide* **5***). Compound* **5** *reacted with formamidine, o-aminophenol, 1,2-phenylenediamine, aminopyrazole, and aminotetrazole to give the corresponding heterocyclic compounds.* © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:200–204, 2005; Published online in Wiley InterScience (www.interscience.wiley. com). DOI 10.1002/hc.20094

INTRODUCTION

The Vilsmeier reagent, HCONR¹R²/POCl₃, has found extensive application in the synthesis of aldehyde derivatives and formamidines [1]. The reagent is an equilibrium mixture of two iminium salts, the more reactive being the β -phosphoryliminium chloride (A) rather than the β -chloroiminium phosphate (B) [2] (Fig. 1).

We recently reported that application of the Vilsmeier's reaction to acetylphosphonate led stereospecific formation of (Z) - β -phosphonyl- β -chlorovinylaldehyde [3]. We investigated this synthesis more deeply and widened it to 5,5-dimethyl-1,2 oxathiolan-4-one 2,2-dioxide **4**. Chloroformylation of 5,5-dimethyl-1,2-oxathiolan-4-one 2,2-dioxide **4** with Vilsmeier reagent $(DMF/POCl₃)$ afforded suc- $\cosh(4\cosh(1-\beta))$ cyclic β -chlorovinylaldehyde **5** (4-chloro-5,5-dimethyl-3-formyl-1,2-oxathiolene 2,2-dioxide). **5** is a very useful intermediate for the synthesis of heterocyclic compounds.

RESULTS AND DISCUSSION

The action of $DMF/POCl₃on 5.5-dimethyl-1,2-oxa$ thiolan-4-one 2,2-dioxide **4** at 30◦ C led to the sole product 4-chloro-5,5-dimethyl-3-formyl-1,2-oxathiolene 2,2-dioxide **5** in 64.5% yield (Scheme 1). The reaction of **5** with formamidine, aminopyrazole, aminotetrazole, *o*-aminophenol, 1,2-phenylenediamine, and 5-phenyl-4-amino-3-mercapto-(4*H*)-1,2,4 triazoles gave the corresponding heterocyclic compounds $6-10$ in the presence of K_2CO_3 (Scheme 2). These heterocyclic compounds were all characterized by their 1 H, 13 C NMR, and elemental analysis.

Of all the new compounds, compounds **9a, 9b**, and **10** have a seven-membered ring, which is commonly considered unfavorable because of the high strain in seven-membered ring. X-ray diffraction analysis of a single crystal of **10** further established the structure [4]. As depicted in Fig. 2, there undoubtedly exists a seven-membered ring C_{11} - C_{10} - C_{9} - $S_1-C_8-N_3-N_4$. Selective bond distances and angles are listed under Fig. 2.

On treatment of 4-chloro-5,5-dimethyl-3-formyl-1,2-oxathiolene 2,2-dioxide **5** with 1,2-phenylenediamine and aminopyrazole in the presence of K_2CO_3 ,

Correspondence to: Li Tian; e-mail: lilytianli@hotmail.com. Contract grant sponsor: Ministry of Education of China.

c 2005 Wiley Periodicals, Inc.

FIGURE 1 The two forms of Vilsmeier reagent.

which gave the expected compounds **7a** and **9b**, respectively, we also obtained small amounts of the imines **11** and **12** that resulted by the reaction of the formyl group of **5** with the amino group of aminopyrazole or 1,2-phenylenediamine (Scheme 3).

As shown in Scheme 3, a plausible pathway for this reaction would consist of two steps: in the first step, 1,2-addition of the amino groups of aminopyrazole or 1,2-phenylenediamine to the formyl group of **5** gives imines **11** and **12**; in the second step, intramolecular nucleophilic substitution of the nitrogen atom in **11** or **12** with chlorine atom on C_4 in them forms the final compounds **7a** and **9b**.

The reaction of 4-chloro-5,5-dimethyl-3-formyl-1,2-oxathiolene 2,2-dioxide **5** with hydrazine, hydroxylamine in the presence of K_2CO_3 can only give the intermediates hydrazones **13** and oxime **14** (Scheme 4), which cannot cyclize further to give the corresponding pyrazoles or isoxazole in the presence of NaH, K_2CO_3 , or DMAP.

CONCLUSIONS

In conclusion, chloroformylation of 5,5-dimethyl-1,2-oxathiole-4-one 2,2-dioxide **4** with Vilsmeier reagent $(DMF/POCl₃)$ led to 3-carbaldehyde-4chloro-5,5-dimethyl-1,2-oxa-thiolene 2,2-dioxide **5**. Compound **5** is a very useful intermediate in organic synthesis. It reacted with formamidine, *o*-aminophenol, 1,2-phenylenediamine, aminopyrazole, and aminotetrazole to give the corresponding heterocyclic compounds in high yields.

EXPERIMENTAL

Melting points were determined with a Thomas– Hoover melting points apparatus. ¹H NMR spectra

were determined with a Bruker AC-P30 in $CDCl₃$ $(CD_3)_2CO$ or DMSO solution. Chemical shifts were reported in ppm (δ) downfield from Me₄Si. Elemental analyses were performed on a Yanaco CHN Corder MT-3 apparatus.

Synthesis of Compound **4**

To a mixture of acetone cyanohydrin **1** (4.0 mL, 43.8 mmol) in dry CH_2Cl_2 (25 mL) and Et_3N (12 mL, 87.5 mmol)) was added dropwise methane sulfonyl chloride (4.8 mL, 62.1 mmol) whilst maintaining the temperature between 0 and 5◦ C. The reaction was allowed to reach room temperature and was stirred

FIGURE 2 X-ray structure of compound **10**. The hydrogen atoms are omitted for clarity. Selective bond distance (A) and angles (°): S(1)-C(8) = 1.723(4), S(1)-C(9) = 1.748(3), $C(9) - C(10) = 1.338(4)$, $C(10) - C(11) = 1.448(3)$, $C(11) - N(4) = 1.275(4), N(4) - N(3) = 1.389(4). C(10) - C(11) N(4) = 131.5(3), C(11) - N(4) - N(3) = 118.2(3), C(8) - S(1) C(9) = 98.58$, $S(1) - C(9) - C(10) = 123.9(3)$.

for 2 h. The mixture was filtered over Celite to remove triethylamine hydrochloride, and the filtrate was evaporated. Column chromatography (2:1 mixture of petroleum ether and AcOEt as the eluent) of the residue yielded compound **2** (5.30 g, 74%) as a colorless oil.

Compound **2** (0.43 g, 2.65 mmol) in dry THF (12 mL) was stirred with 60% NaH dispersion in oil (0.13 g, 3.18 mmol, 1.2 equiv) for 3 h at r.t. Water was added slowly to destroy the excess NaH, and the mixture was extracted with AcOEt $(3 \times 30 \text{ mL})$. The dried organic layer ($MgSO₄$) was evaporated to yield a white solid **3** that was recrystallized from CH_2Cl_2 : acetone = 2:1 as colorless plates (0.305 g, 71%): mp 175–176◦ C (lit [5] mp 175–176◦).

To a solution of **3** (0.305 g, 1.87 mmol) in EtOH (10 mL) was added concentrated HCl (1 mL) and then the mixture was stirred for 5 min. The mixture was filtered over Celite, and the filtrate was evaporated to leave a solid residue that, upon recrystallization from hexane: toluene (2:1), gave **4** (0.21 g, 66%) as colorless plates: mp 58–59◦ C (lit [4] mp 59◦ C) (see Scheme 5).

*The Preparation of 4-Chloro-5,5-dimethyl-3 formyl-1,2-oxathiolene 2,2-dioxide (***5***)*

To a mixture of POCl₃ (0.12 mol) in CH₂Cl₂ (15 mL) was added dropwise a solution of DMF (0.12 mol) in CH_2Cl_2 (5 mL) at 0 \degree C under N₂ atmosphere. The

SCHEME 5

mixture was stirred at room temperature for 0.5 h. Then 5,5-dimethyl-1,2-oxathiolan-4-one 2,2-dioxide **4** (3.28 g, 0.02 mol) was added dropwise at 0◦ C. The reaction mixture was stirred for 30 h at room temperature. The mixture was poured slowly through a condenser to a bottle which contained 150 g crushed ice, and stirred for 3 h more. The aqueous layer was then extracted with CH_2Cl_2 (3 × 30 mL). The combined organic layers were washed with 50 mL brine, dried over $Na₂SO₄$, filtered and concentrated in vacuo. The crude yellow product was purified by recrystallization from AcOEt : petroleum ether (1:2) to give **5** as white crystals (2.73 g, 64.5%), mp 175– 176[°]C; ¹H NMR (CDCl₃, 300 MHz): *δ* 9.88 (s, 1H, $-CHO$), 1.75 [s, 6H, $(CH_3)_2$]; ¹³C NMR (300 MHz, CDCl₃): $\delta = 178.22$ (-CHO), 159.64 (C₅), 121.55 (C₄), 90.12 [$(CH_3)_2$ -C-O], 26.78 (CH₃-); Anal. Calcd for C6H7SO4Cl: C, 34.21; H, 3.35 Found: C, 34.15; H, 3.53.

General Procedure for the Cyclization of Compound **5**

To a mixture of compounds $5(1 \text{ mmol})$ in CH_2Cl_2 (5) mL) was added dropwise a solution of formamidine, aminopyrazole [6,7], aminotetrazole [8], *o*-aminophenol, 1,2-phenylenediamine, or 5-phenyl-4-amino-3-mercapto-(4*H*)-1,2,4-triazole [9], methylhydrazine [10,11], phenylhydrazine, and hydroxylamine hydrochloride (1 mmol) in CH_2Cl_2 or water at 10°C, then K_2CO_3 (1 mmol) in water (2 mL) was added dropwise. The reaction mixture was kept at 30◦ C for 2–3 h. The aqueous layer was extracted with CH₂Cl₂ (3×10 mL). The combined organic layers were washed with 20 mL saturated brine, dried over $Na₂SO₄$, filtered, and concentrated. The residue was separated by silica gel using AcOEt : petroleum ether (3:1) as developing solvent to afford corresponding heterocyclic compounds **6–14**, which can be purified by recrystallizing from suitable solvents.

*3,3-Dimethyl-2-oxa-1-thia-4,6-diaza-indan 1,1 dioxide (***6***).* White crystals, yield 46.36%, mp 128–129[°]C; ¹H NMR (CDCl₃, 300 MHz,): δ 9.45 (s, 1H, H₇), 9.29 (s, 1H, H₅), 1.85 [s, 6H, $(C_1H_3)_2$]; ¹³C NMR (CDCl₃): *δ* 170.31 (C_{3a}), 162.25 (C₅), 151.93 (C_7) , 125.45 (C_{7a}) , 93.09 (C_3) , 26.21 (CH_3-) ; Anal. Calcd for $C_7H_8N_2SO_3$: C, 41.99; H, 4.03; N, 13.99. Found: C, 41.95; H, 4.08; N, 13.93.

*3,3-Dimethyl-8H-2-oxa-1-thia-3b,4,8-triaza-indacene 1,1-dioxide (***7a***).* Yellow crystals, yield 50.2%; mp 213–215°C; ¹H NMR (CDCl₃, 300 MHz,): *δ* 9.21 $(s, 1H, H_9)$, 8.41 $(s, 1H, H_5)$, 6.86 $(s, 1H, H_6)$, 1.94 [s, 6H, $(C_{\frac{1}{3}})^2$]; ¹³C NMR (CDCl₃): δ 160.35 (C_{3a}), 149.68 (C₉), 149.3 (C₇), 132.57 (C₅), 114.54 (C_{9a}), 98.19 (C_6), 93.44 (C_3), 26.63 (CH_3); Anal. Calcd for C9H9N3SO3: C, 39.21; H, 3.66; N, 15.24. Found: C, 39.19; H, 3.76; N, 15.37.

*6-Cyano-3,3-dimethyl-5-methylsulfanyl-1,3-dihydro-2-oxo-1-thia-3b,4,8-triaza-indacene 1,1-dioxide (***7b***).* White crystals, yield 61.29%, mp 237–239◦ C; ¹H NMR (CDCl₃, 300 MHz,): *δ* 7.05 (s, 1H, H₉), 2.75 (s, 3H, $-SCH_3$), 1.86 [s, 6H, $(CH_3)_2$]; ¹³C NMR (DMSO): δ 164.06 (C_{3a}), 162.09 (C₉), 152.72 (C₇), 136.01 (C₅), 122.36 (C_{9a}), 115.46 ($-C \equiv N$), 111.79 (C_6) , 92.59 (C_3) , 25.95 $(-2CH_3)$, 13.18 (CH_3S-) ; Anal. Calcd for $C_{11}H_{10}N_4S_2O_3$: C, 42.57; H, 3.25; N, 18.05. Found: C, 42.40; H, 3.39; N, 17.98.

*3,3-Dimethyl-8H-2-oxa-1-thia-3b,4,5,6,8-pentaaza-indacene 1,1-dioxide (***8***).* White crystals, yield 60.50%, mp 160–162°C; ¹H NMR (CDCl₃, 300 MHz): *δ* 8.91 (s, 1H, H₉), 1.82 [s, 6H, (C<u>H</u>₃)₂]; ¹³C NMR (300 MHz, CDCl₃): δ 173.75 (C_{3a}), 166.30 (C₇), 154.33 (C₉), 121.16 (C_{9a}), 92.40 [(CH₃)₂-C-O], 26.11 $(-2CH_3)$; Anal. Calcd for $C_7H_7N_5SO_3$: C, 34.85; H, 2.93; N, 29.03. Found: C, 34.77; H, 2.88; N, 28.93.

*3,3-Dimethyl-3H-2,4-dioxa-1-thia-10-aza-benzoazulene 1,1-dioxide (***9a***).* White crystals, yield 45.36%, mp 171–172°C; ¹H NMR (CDCl₃, 300 MHz): *δ* 7.23–6.98 (m, 4H, Ph), 5.54 (s, 1H, H11), 1.76 [s, 6H, $(CH_3)_2$]; ¹³C NMR [(CD₃)₂CO]: 157.07 (C_{3a}), 149.64 (C_{11}) , 128.03, 127.26, 124.65, 120.70, 117.04 (Ph), 115.57 (C_{10a}), 88.25 [(CH₃)₂-C-O], 26.12 (CH₃-); Anal. Calcd for C₁₂H₁₁SO₄: C, 54.33; H, 4.18; N, 5.28. Found: C, 54.47; H, 4.18; N, 5.14.

*3,3-Dimethyl-3,4-dihydro-2-oxa-1-thia-4,10-diaza-benzo-azulene 1,1-dioxide (***9b***).* Purple crystals, yield 56.82%; mp 172–173°C; ¹H NMR (CDCl₃, 300 MHz): *δ* 6.71–6.78 (m, 2H, Ph), 6.54–6.58 (d, $J = 6.58$ Hz, 1H, H₈), 6.37 (s, 1H, H₁₁), 5.98–6.02 (d, $J = 6.58$ Hz, 1H, H₅), 1.59 [s, 6H, $(C_{\text{H}_3})_2$]; ¹³C NMR [(CD₃),CO]: δ 171.94 (C_{3a}), 154.12 (C₁₁), 133.34, 130.03, 129.23, 124.92, 123.19, 121.19 (Ph), 117.95 (C_{11a}) , 90.90 $[(CH_3)_2-C-O]$, 25.68 (CH_3-) Anal. Calcd for $C_{12}H_{12}N_2SO_3$: C, 54.49; H, 4.57; N, 10.60. Found: C, 54.26; H, 4.62; N, 10.79.

*3,3-Dimethyl-7-phenyl-3H-2-oxa-1,4-dithia-5,6,8,9-tatraaza-cyclopenta-azulene 1,1-dioxide (***10***).* Yellow crystals, yield 72.5%; mp 215–217◦ C (decompose); ¹H NMR (CDCl₃, 300 MHz) *δ* 7.86–7.92 (m, 3H, Ph), 7.51–7.57 (m, 3H, Ph, and CH=N) 1.83 [s, 6H, (C<u>H</u>₃)₂]; ¹³C NMR (CDCl₃): *δ* 161.19 (C_{10}) , 157.15 (C_{3a}) , 142.59 (C_8) , 139.99 (C_5) , 131.24, 129.51, 128.65, 126.92 (Ph), 124.74 (C_{10a}), 90.47 $[CH_3)_2$ -C-O], 25.93 (-2CH₃); Anal. Calcd for $C_{14}H_{12}N_4S_2O_3$: C, 48.26; H, 3.47; N, 16.08. Found: C, 48.14; H, 3.50; N, 16.12.

*(4-Chloro-5,5-dimethyl-2,2-dioxo-2,5-dihydro- [1,2]oxathiol-3-ylmethylene)-(2H-pyrazol-3-yl)-amine (***11***).* White crystals, yield 15.8%; mp 217–219◦ C; 1H NMR (CDCl₃, 300 MHz) δ 9.21 (s, 1H, NH-N=C<u>H</u>), 8.40 (s, 1H, $-CH=N$), 6.86 (s, 1H, $C=CH$), 1.94 [s, 6H, $(C_1H_3)_2$]; Anal. Calcd for $C_9H_{10}N_3SO_3$: C, 45.18; H, 3.79; N, 17.56. Found: C, 45.22; H, 3.86; N, 17.33.

*N-(4-Chloro-5,5-dimethyl-2,2-dioxo-2,5-dihydro- [1,2]oxathiol-3-ylmethylene)-benzene-1,2-diamine (***12***).* Yellow crystals, yield 26.67%, mp 138–139◦ C; ¹H NMR (CDCl₃, 300 MHz) δ 8.35 (s, 1H, H–C=N), 7.08–7.13 (m, 2H, Ph), $6.62-6.71(d, J = 7.68 \text{ Hz})$ 1H, Ph), 6.62–6.67 (d, *J* = 7.68 Hz, 1H, Ph), 2.93 (s, N H_2), 1.73 [s, 6H, $(CH_3)_2$]; Anal. Calcd for $C_{12}H_{13}N_2SO_3Cl$: C, 47.74; H, 4.48; N, 9.42. Found: C, 47.92; H, 4.36; N, 9.31.

*N-(4-Chloro-5,5-dimethyl-2,2-dioxo-2,5-dihydro- [1,2]oxathiol-3-ylmethyl-ene)-N -methyl-hydrazine (***13a***).* White crystals, yield 56.8%, mp 130–131◦ C; ¹H NMR (CDCl₃, 300 MHz,): δ 6.94 (s, 1H, CH=N), 2.97 (s, CH₃N-) 1.67 [s, 6H, $(C_{\frac{1}{3}})_2$]; ¹³C NMR $(CDCl_3): \delta$ 154.7 (\underline{CH} =NNHCH₃), 138.85 (C₄), 116.14 (C_3) , 89.07 (C_5) , 32.65 (NH-CH₃), 25.74 (2CH₃); Anal. Calcd for $C_7H_{11}N_2SO_3Cl$: C, 35.22; H, 4.66; N, 11.73. Found: C, 34.87; H, 4.98; N, 11.73.

*N-(4-Chloro-5,5-dimethyl-2,2-dioxo-2,5-dihydro- [1,2]oxathiol-3-ylmethylene)-N -phenyl-hydrazine (***13b***).* Yellow crystals, yield 67.5%, mp 161–162◦ C; ¹H NMR (CDCl₃, 300 MHz): *δ* 8.21 (s, 1H, NH), 7.36 (s, CH=N), 7.30–6.90 (m, 5H, Ph), 1.69 [s, 6H, $(C_{\text{H}_3})_2$]; ¹³C NMR (CDCl₃): δ 142.48 (CH=NNH), 138.91 (C_4) , 121.29 (C_3) , 129.62, 129.39, 122.14, 113.64 (Ph), 89.30 (C₅), 25.70 (2CH₃); Anal. Calcd for C_1 , H₁₃N₂SO₃Cl: C, 31.94; H, 3.57; N, 6.21. Found: C, 32.01; H, 3.66; N, 6.17.

*4-Chloro-5,5-dimethyl-2,2-dioxo-2,5-dihydro- [1,2]oxathiole-3-carbaldehyde oxime (***14***).* White crystals, yield 68.9%, mp 154–155◦ C; 1H NMR (CDCl₃, 300 MHz,): δ 8.64 (s, 1H, -OH), 7.94 (s, CH=N), 1.71 [s, 6H, $(CH_3)_2$]; ¹³C NMR (CDCl₃): δ 146.87 (CH=NOH), 137.76 (C₄), 127.14 (C₃), 90.32 (C_5) , 25.51 (2CH₃). Anal. Calcd for $C_6H_8NSO_4Cl$: C, 47.92; H, 4.36; N, 9.31. Found: C, 48.08; H, 4.46; N, 9.86.

REFERENCES

- [1] Meth-Cohn, O.; Stanforth, S. P. In Comprehensive Organic Synthesis; Trost, B. M. (Ed.); Pergamon: Oxford, 1991, Vol. 2, p. 777.
- [2] Tebby, J. C.; Willetts, S. E. Phosphorus and Sulfur 1987, 30, 293.
- [3] Qian, D. Q.; Liu, Y. X.; Cao, R. Zh.; Liu, L. Z. Phosphorus, Sulfur, and Silicon 2000, 158, 179.
- [4] Crystallographic data for the structure reported in this article have been deposited with Cambridge Crystallographic Data Centre as supplementary publication No. CCDC 253013.
- [5] Ingate, S. T.; Jose, L. M; Myriam, W.; Cristophe, P.; Erik, D. C. Tetrahedron 1997, 53, 17795.
- [6] (a) Zhao, W. G.; Wang, S. H.; Wang, Y. M. Chem Reagents 2000, 22, 376; (b) Medhat, A.; Zaharan, A. M., et al. Il Farmaco 2001, 56, 277; (c) Zhao, W. G.; Wang, S. H.; Wang, Y. M. Chem Reagents 2000, 22, 376; (d) Medhat, A. Z.; Ahmed, M. S.; Mohamed, S. A. E.; Yousry, A. A.; Usama, H. E. Il Farmaco 2001, 56, 277.
- [7] Dorn, H.; Zubek, A. Organic Synth 1968, 48, 8.
- [8] Stolle, R. Ber. Chemische Berichte 1929, 62, 1118.
- [9] Jack, R. R.; Heindel, N. D. J. Heterocycl Chem 1976, 13, 925.
- [10] Hatt, H. H. Organic Syntheses Collective. Vol. III, Wiley Press, New York, 1973, 395–397.
- [11] Ono, Y.; Sugihara, Y.; Ishii, A.; Nakayama, J. Bull Chem Soc Jpn 2003, 76, 613.